PROVIMI PRODUCTS FUNDED PROJECTS

Evaluating the efficacy of HERBOLIV+ to control wild animal intrusion in farmland and its effect on

Crop and Soil

REPORT

Submitted by **Dr.R.Revathi**, **Ph.D** Professor and Head

Department of Forest Products and Utilization
Forest College and Research Institute
Tamil Nadu Agricultural University
Mettupalayam- 641301

PROVIMI PRODUCTS FUNDED PROJECTS

Evaluating the efficacy of HERBOLIV+ to control wild animal intrusion in farmland and its effect on Crop and Soil

REPORT

Submitted by **Dr.R.Revathi**, **Ph.D** Professor and Head

Department of Forest Products and Utilization
Forest College and Research Institute
Tamil Nadu Agricultural University
Mettupalayam- 641301

CONTENTS

SL.NO.	TITLE	PAGE NO.
1.	EXPERIMENT DETAILS	1
	RESULTS OF THE EXPERIMENT	
2.	a. EFFECT OF HERBOLIV* ON THE INCIDENCE AND INTENSITY OF DAMAGE BY WILD ANIMALS	6
	b. IMPACT OF HERBOLIV+ ON THE CROP AND SOIL.	19
3.	CONCLUSION AND RECOMMENDATION	37
4.	ANNEXURE	42

EXPERIMENT DETAILS

Evaluating the efficacy of HERBOLIV+ to control wild animal intrusion in farmland and its effect on Crop and Soil

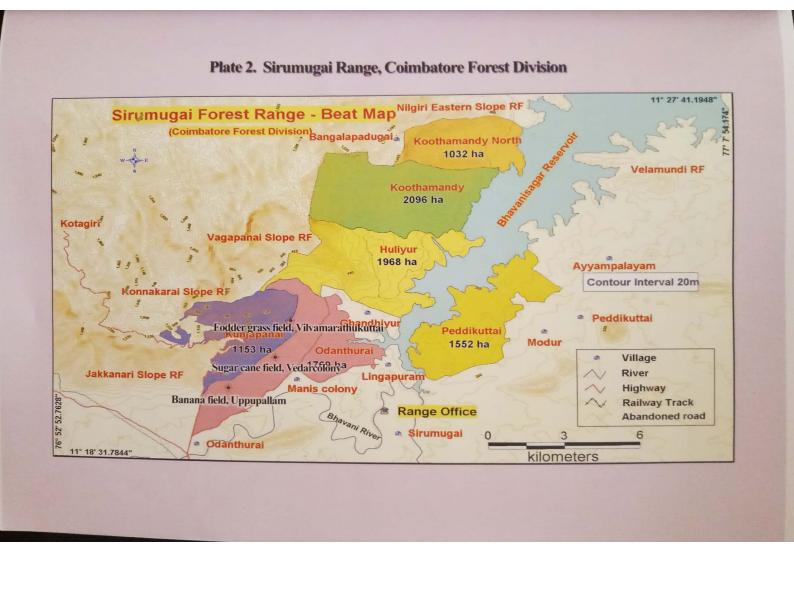
Evaluation of the efficacy of Herboliv* in farmland was carried out to assess the level of wild animal incidence and to quantify the degree of damage inflicted by the wild animals after the application of Herboliv* and its impact on the crop and soil.

OBJECTIVES

- 1. To evaluate the efficacy of the HERBOLIV+ (Wildlife repellent) to repel the wild animals.
- 2. To evaluated the influence of the HERBOLIV on Crop and Soil.

I. STUDY AREA

Herboliv* was tested in Sirumugai range of Coimbatore forest division, Tamil Nadu state, India. Farmers field where the agricultural crops being cultivated in the forest fringe areas which are prone to wildlife damage were identified and selected for the experimental trials.


Table 1. Geographical Location

S. No.	Crop	Location	GPS Points	Above Mean Sea Level
1	Sugarcane	Vedarcolony, Sirumugai Range	11 ⁰ 20' N 76 ⁰ 58' E	292 m
2	Banana	Uppupallam, Sirumugai Range	11 ⁰ 19' N 76 ⁰ 56' E	310 m
3	Fodder grass	Vilvamarathukuttai, Sirumugai Range	11 ⁰ 22' N 76 ⁰ 58' E	330 m

2. Environmental conditions

Sirumugai range receives an annual rainfall of 830 mm. The mean maximum and minimum temperature is 32.2 °C and 23.2 °C, respectively. The climatic factors comprising of mean maximum and minimum temperature, quantum of rainfall, number of rainy days, and relative humidity which prevailed during the experimental period were recorded and is presented in Table 2.

Scanned by CamScanner

Table 2. Weather data recorded during the experimental period (September 2012 – April 2013)

e (°C)	Relative hu	umidity (%)	Rainy	Rainfall
Max.	Min.	Max.	days	(mm)
33.9	52.0	86.5	1	34.6
32.9	63.0	86.4	11	367.6
32.1	58.7	83.7	1	17.5
32.0	55.0	83.5	1	16.9
33.3	42.7	81.5	NIL	NIL
34.0	48.6	81.1	1	90.2
36.0	45.9	72.0	1	57.0
38.4	47.0	71.8	3	61.0
				38.4 47.0 71.8 3 ological Observatory, FC&RI, Mettupalayam)

3. Edaphic factors

The soil was found to be non-calcareous, red sandy loam (*Typic Ustropept*) and the chemical and biological properties of the soil are given in Table 3.

Table 3. Chemical and biological properties of the soil

S. No.	Particulars	Sugarcane	Banana	Fodder grass	Method adopted and reference
I. CI	nemical propert	ies			
1	Soil pH	7.23	7.53	7.66	pH meter (Piper,1956)
2	Electrical conductivity (dSm ⁻¹)	0.16	0.26	0.14	Conductivity Bridge (Jackson, 1973)
3	Available nitrogen (kg ha ⁻¹)	248.70	235.60	277.33	Alkaline permanganate method (Subbaiah and Asija, 1956)

4	Available phosphorus (kg ha ⁻¹)	13.16	13.80	11.47	Olsen's method (Jackson,1973)
5	Available potassium (kg ha ⁻¹)	287.70	326.90	321.00	Flame photometer (Jackson,1973)
II. B	iological proper	ties			
1	Bacterial population	54.3×10 ⁶ CFU's /g soil	72.3×10 ⁶ CFU's /g soil	38.3×10 ⁶ CFU's / g soil	Soil dilution
2	Fungal population	20.7×10 ⁵ CFU's / g soil	35.7×10 ⁵ CFU's /g soil	20.7×10 ⁵ CFU's /g soil	and plate count method (Pramer and
3	Actinomycetes population	46.8×10 ³ CFU's / g soil	42.3×10 ³ CFU's /g soil	58.0×10 ³ CFU's /g soil	Schmidt,1964)

II. EXPERIMENT DETAILS

The study was undertaken at wildlife prone agriculure field of Sirumugai range in Coimbatore district located in Tamil Nadu.

Table 4. Experimental design

Design	:	Randomized Block Design (RBD)
Treatment	:	8
No. of replication	:	Three
Period of the study	:	8 Months
Agricultural Crops	:	Sugarcane, Banana, and Fodder grass
Targeted Animals	:	Elephant, Deer, and Wild Boar
Area of the field	:	One hectare of each crop

Table 5. Treatment details

SI.No.	Treatments
T ₁	Spraying of Herboliv ⁺ – (1 litre in 10 litres of water – 10%)
T ₂	Drenching of Herboliv ⁺ – (2 litres in 10 litres of water – 20%)
T ₃	Soil application of Herboliv ⁺ – (5 litres in 10 litres of water – 50%)
T ₄	Spraying + Drenching of Herboliv ⁺ – (10 % spraying + 20 % drenching)
T ₅	Spraying + Soil Application of Herboliv* - (10 % spraying + 50 % soil application)
Т ₆	Drenching + Soil Application of Herboliv ⁺ - (20 % drenching + 50 % soil application)
T ₇	Spraying + Drenching + Soil Application of Herboliv ⁺ - (10 % spray + 20 % drenching +50 % soil application)
T ₈	Control

3. Method and Frequency of application

- 1. Spraying 7 days interval (The portable power sprayer was used to spray Herboliv⁺).
- 2. Drenching 3 days interval (Gunny bags were used for drenching and placed at an interval of 3m).
- Soil application monthly interval (The soil application was done by mixing with irrigated water).

4. Recording of Observations

Method of observation

The study was conducted during September 2012 - April 2013 in the three fields (Sugarcane, Banana, and Fodder grass) and the level of wild animal intrusion and percentage of damage was observed. The data collection was done by using both direct and indirect evidence, wherein the direct evidence indicates the visual observation. The indirect evidence involves the observation of foot print, damage to crops and browsing of foliage.

Plate 3. Materials used for the study

Herboliv⁺

Mixing of Herboliv⁺ with water

Power sprayer used for spraying Herboliv⁺

Plate 4. Overview of study trials

Sugarcane field at Vedarcolony

Banana field at Uppupallam

Fodder grass field at Vilvamarathukuttai

a. Crop raid by wild animals

The number of times the cultivated crops raided by the wild animals in Herboliv⁺ treated field were observed and recorded once in every 3 days.

b. Level of animal intrusion

The level of animal intrusion in Herboliv+ treated field were observed and recorded by measuring the length to which the animals has intruded.

c. Quantification of crop damage

The percentage of crop damage in Herboliv+ treated field were observed and recorded by using the below formula in the different treatments.

d. Assessment of damage

The damage to the economic part of the crops, such as leaves, stems, roots, fruits by the wild animals and stage of the crop most vulnerable to damage in Herboliv⁺ treated field were observed and recorded for different treatments.

RESULTS OF THE EXPERIMENT

EFFECT OF HERBOLIV' ON THE INCIDENCE AND INTENSITY OF DAMAGE BY WILD

ANIMALS

1. Level of wild animal incidence (Number of crop raid)

Wild animal incidence was assessed by observing the number of times the cultivated crops, viz; sugarcane, banana, fodder grass were raided by Elephant, Spotted deer and Wild boar.

Sugarcane field

Among the eight treatments, the total number of crop raid by Elephant, Spotted deer and Wild boar was 32, 99 and 71 respectively and it has occurred in all the months *viz.*, September, October, November, December, January, February, March and April (Table 6). The total number of crop raid by wild animal was minimum during the month of April which was 0, 4 and 5 times for Elephant, Spotted deer and Wild boar respectively. During the month of December, the damage to sugarcane by Elephant, Spotted deer and Wild boar was maximum and the total numbers of crop raid were 8, 17 and 15 respectively.

Banana field

The crop raid by the wild animals (Elephant, Spotted deer, and Wild boar) in the Herboliv* treated banana field is indicated in Table 7. The total number of crop raid by Elephant, Deer and Wild boar in the banana field was found to be 22,105 and 85 times, respectively during September 2012 to April 2013. Among the wild animals, the spotted deer raided the crop, maximum number of times followed by Wild boar and Elephant. The T₇ treatment (spraying + drenching + soil application) has shown the least number of crop raid by Elephant (once), spotted deer (five times) and wild boar (twice)

Fodder grass field

The crop raid by the wild animals (Elephant, Spotted deer, and Wild boar) in the Herboliv* treated fodder grass field is indicated in Table 8. The number of crop raid due to

Table 6. Number of crop raid by Elephant, Spotted deer and Wild boar in the Herboliv⁺ treated sugarcane field

Month	Se	pteml	oer	0	ctobe	r	No	vemb	er	De	cemb	er	Ja	nuary	,	F	ebrua	ary	M	larch			April			Total	
Month	E	D	w	Е	D	w	E	D	w	E	D	w	Е	D	w	Е	D	w	Е	D	w	Е	D	w	E	D	w
T ₁	2	1	1	- "	2	-	1	1	1	1	1	1	1	1	1	-	1	1	-	1	-	-	-	-	5	8	5
T ₂	-	2	1	1	3	1	1	3	1	1	3	2	-	2	2	1	1	1	-	1	1	-	1	1	4	16	10
T ₃	-	1	1	1	1	1	-	1	1	1	2	2	1	1	1	-	2	1	-	1	1	-	-	-	3	9	8
T ₄	-	2	-	-	1	-	1	1	1	1	1	1	-	1	1	-	1		-	-	1	-	-	1	2	7	5
T ₅	1	1	1	1	2	2	-	2	1		2	2	-	1	2	-	1	2	-	1	-	-	-	-	1	10	10
T ₆	1	3	1	-	2	1	1	3	1	1	2	1	1	2	1	1	1	1	-	1	1	-	1	1	5	15	8
T ₇	-	1	-	-	1	1	1	1	-	-	1	1	-	1	-	-	-	-	-	-	-	-	-	-	1	5	2
T ₈	1	5	2	2	4	3	2	4	3	3	5	5	1	4	3	1	3	2	1	2	3	-	2	2	11	29	23
Total	4	16	7	5	16	9	7	16	9	8	17	15	4	13	11	3	10	8	1	7	7	0	4	5	32	99	71

E - Elephant, D - Spotted deer, W - Wild boar, (-) No crop raid

Table 7. Number of crop raid by Elephant, Spotted deer, and Wild boar in the Herboliv^{*} treated banana field

	Se	pteml	oer	C	ctobe	er	No	ovemb	er	De	cemb	er	J	anuar	у	Fe	bruai	У	1	March			April			Total	
Month	E	D	w	E	D	w	E	D	w	Е	D	w	Е	D	w	E	D	w	Е	D	w	Е	D	w	E	D	W
T ₁	-	1	2	-	1	1	1	2	1	-	1	1	1	1	-	-	1	1	-	1	1	-	-	-	2	8	7
T ₂	1	2	4	-	3	2	-	3	2	1	4	2	1	2	2	1	1	2	-	1	3	-	1	1	4	17	18
T ₃	-	3	1	1	1	1	-	2	1	1	2	1	-	1	1	-	2	1	-	1	1	-	-	-	2	12	7
T ₄	-	2	2	-	2	-	1	1	1	_	1	1	-	1	1	-	1	-	1	-	1	-	-	1	2	8	7
T ₅	-	1	1	-	1	2	-	2	1	1	2	2	-	1	2	-	1	2	-	1	-	-	-	-	1	9	10
T ₆	-	3	1	1	2	1	-	3	1	-	2	1	1	2	1	1	1	1	-	1	1	-	1	1	3	15	8
T ₇	-	1	-	-	1	1	1	1	-	-	-	1	-	1	-	-	-	-	-	1	-	-	-	-	1	5	2
T ₈	1	5	5	-	4	3	1	4	3	2 -	5	4	1	4	3	1	3	3	1	4	3	-	2	2	7	31	26
Total	2	18	16	2	15	11	4	18	10	5	17	13	4	13	10	3	10	10	2	10	10	0	4	5	22	105	85

E - Elephant, D - Spotted deer, W - Wild boar, (-) No crop raid

Table 8. Number of crop raid by Elephant, Spotted deer, and Wild boar in the Herboliv⁺ treated fodder grass field

	Sej	ptemb	er	0	ctobe	г	No	vemb	er	De	cemb	er	J	anuar	y	Fe	brua	iry	Mar	ch		A	pril			Total	
Month	E	D	w	E	D	w	Е	D	w	Е	D	w	Е	D	w	E	D	w	E	D	w	E	D	w	E	D	w
T ₁	1	5	1	2	3	3	1	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	10	6
T ₂	3	9	4	3	6	5	2	4	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	19	13
T ₃	1	3	2	1	2	1	2	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	6	5
T ₄	2	5	2	1	1	1	-	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	9	4
T ₅	1	2	1	2	3	1	1	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	7	4
T ₆	3	7	3	1	5	2	3	5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	17	8
T ₇	3	2	1	2	3	1	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7	7	3
T ₈	3	8	4	5	10	6	3	7	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	11	25	15
Total	17	41	18	17	33	20	14	26	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	100	58

E - Elephant, D - Spotted deer, W - Wild boar, (-) No crop raid

Elephant intrusion was found to be 17, 17 and 14 times during September, October and November.

Among all the 8 treatments the damage by the Spotted deer was 41, 33, 26, from September to November, respectively and the Wild boar damage to fodder grass was 18, 20 and 20 during the months of September, October and November respectively. The fodder grass was completely devastated due to Elephant, Spotted deer and Wild boar.

2. Level of wild animal intrusion

Sugarcane field

The level of Elephant, Spotted deer and Wild boar intrusion in the Herboliv $^{+}$ treated sugarcane field is given in Table 9. From the table it is understood that the level of Elephant intrusion was found to be more in T₈ (control) with 66.4 per cent followed by T₂ (drenching) with 48.7 per cent, T₆ (drenching + soil application) with 46per cent and T₃ (soil application) with 43.3 per cent., whereas it was 20 per cent in T₇ (spraying + drenching + soil application). The level of Elephant intrusion was found to be maximum in December(305) followed by November(275).

The mean percentage of spotted deer intrusion was minimum in T_7 (spraying + drenching + soil application) with 23.0 percent and maximum in T_8 with 56.2 per cent. The level

Among the different months during the experimental trial the level of Wild Boar intrusion was found to be maximum in December followed by November and minimum in the month of April.

Banana field

The level of Elephant, Spotted deer and Wild boar intrusion in the Herboliv⁺ treated banana field is depicted in Table 10. From the table it is understood that the level of Elephant intrusion was found to be more in T₈ (control) and maximum during the month of January.

Similarly, the level of Spotted deer intrusion was found to be more in T_8 (control) with 61.2 per cent, and it was found to be maximum in the month of November followed by the

Table 9. Level of Elephant, Spotted deer, and Wild boar intrusion in the Herboliv^{*} treated sugarcane field (%)

Month		eptem	ber	(Octob	er	No	ovem	ber	De	ecemi	oer	J	anua	ry	F	ebrua	ry		Marci	n		April			Total			Mean	
WOILLI	E	D	w	Е	D	w	E	D	w	Е	D	w	Е	D	W	Е	D	w	Е	D	w	E	D	w	E	D	w	E	D	W
T ₁	35	20	30	-	25	-	50	30	20	40	20	20	45	20	25	-	25	20	-	30	-	-	-	-	170	170	115	42.5	24.3	23
T ₂	-	35	40	60	40	30	35	45	25	60	60	30	-	40	35	40	20	30	-	40	20	-	25	30	195	305	240	48.8	38.1	30
T ₃	-	30	25	40	20	20	-	20	40	30	45	25	60	30	30	-	40	25	-	25	35	-	-	-	130	210	200	43.3	30.0	28.6
T ₄	-	20	-	-	25	-	40	40	30	35	25	40	-	25	20	-	30	-	-	-	30	-	-	25	75	165	145	37.5	27.5	29
T ₅	-	30	35	40	60	40	-	30	40	-	40	40	-	20	35	-	30	35	-	35	-	-	-	-	40	245	225	40	40.8	37.5
T ₆	50	45	30	-	30	30	60	50	30	60	30	30	30	30	30	30	25	30	-	20	30	-	30	40	230	260	250	46	32.5	31.3
T ₇	-	20	-	-	25	20	20	25	-	-	20	20	-	25	-	-	-	-	-	-	-	-	-	-	20	115	40	20	23.0	20
T ₈	70	60	60	75	50	50	70	60	60	80	70	60	70	60	50	60	50	40	40	40	70	-	60	50	465	450	440	66.4	56.3	55
Total	155	260	220	215	275	190	275	300	245	305	310	265	205	250	225	130	220	180	40	190	185	0	115	145	1325	1920	1655	344.5	272.5	254

(Data has not been analysed statistically)

E - Elephant, D - Spotted deer, W - Wild boar, (-) No Intrusion

Table 10. Level of Flenbant, Spotted deer, and Wild hoar intrusion in the Herboliy' treated banana field (%)

	Se	ptem	ber	00	ctobe	r	No	vem	ber	De	eceml	ber	J	anua	ry	Fe	bruar	У	,	Marc	h		April			Total			Mean	
Month	E	D	w	E	D	w	E	D	w	E	D	w	E	D	w	E	D	w	E	D	W	E	D	W	E	D	W	E	D	W
T ₁	-	25	30	-	40	25	40	30	30		40	40	45	25	-		45	20	-	30	30		-		85	235	175	43	33.6	29.3
T ₂	40	60	40	-	65	40	-	65	65	60	60	50	75	60	45	50	50	40	-	60	60		45	40	225	465	380	888	58.1	47.5
T ₃	-	40	25	30	20	30	-	45	40	40	45	30	-	35	30	-	40	45	-	25	35	-	-		70	250	235	35	35.7	33.6
T ₄	-	30	35		45	-	30	40	30	-	35	40	-	25	40	-	35	-	40		30		-	35	70	210	210	35	35.0	35
T ₅		25	25	-	30	40	-	50	40	30	40	35	-	40	35		30	35	~	45	-		-		30	260	210	30	37.1	35
T ₆	-	45	30	50	60	30	-	60	30	-	30	30	60	50	30	30	45	40	-	30	40		40	50	140	360	280	223	45.0	35
T ₇		20	-	-	25	25	40	45	-	-	-	20	-	25	-	-	-	-	-	40	-		-		40	155	45	40	31.0	22.5
T _e	60	70	60	-	50	50	70	80	70	75	70	80	70	60	50	60	50	60	50	60	70	-	50	50	385	490	490	222	61.3	61.3
Total	100	315	245	80	335	##	180	415	305	205	320	325	##	320	##	140	295	##	90	290	265	0	135	175	222	2425	2025	350	336.8	299

E - Elephant, D - Spotted deer, W - Wild boar, (-) No Intrusion

Plate 5. Wild animals in the study area

Asian elephant (Elephas maximus)

Chital (Axis axis)

Wild boar (Sus scrofa)

Plate 6. Spraying of Herboliv' in various experimental fields

Spraying in sugarcane field

Spraying in banana field

Spraying in fodder grass field

Plate 7. Drenching of Herboliv' in various experimental fields

Drenching in sugarcane field

Drenching in banana field

Drenching in fodder field

months of October and December. T_2 (drenching) registered the next highest level of Spotted deer intrusion with 58.1 per cent.

The level of Wild boar intrusion was found to be more in T_8 (control) with 61.2 per cent, and it was found to be maximum in the month of December. T_2 (drenching) and T_8 (drenching + soil application) has recorded the next highest level of intrusion by Wild boar. Among the different months during the experimental trial the level of Wild boar intrusion was found to be maximum in December followed by November and it was minimum in the month of April.

Fodder grass field

The level of Elephant, Spotted deer and Wild boar intrusion in the Herboliv* treated fodder grass field is indicated in Table 11. The table shows that the fodder grass was existing for a period of three months (September, October and November) only and by the end of November it was completely foraged by Wild Elephant, Wild deer and wild boar. The level of intrusion by Elephant, Spotted deer and Wild boar was found to be more in T₈ (control), followed by T₂ and T₆. The level of Elephant intrusion was 78.3% in T₈ (Control) and was found to be maximum in October followed by September and November.

The Spotted deer intrusion was found to be maximum(78.3%) in T_8 (control), followed by 75 % in T_6 ((20 % drenching + 50 % soil application).

The level of Wild boar intrusion was found to be maximum (75%) in T_2 (control), followed by T_8 (73.3% - control). Among the different months during the experimental trial the level of Wild Boar intrusion was found to be maximum in November followed by October.

3. Degree of crop damage

Sugarcane field

Crop damage by wild animals in Herboliv $^{+}$ treated field was expressed in percentage and depicted in Table 12. The table indicates that the crop damage due to Elephant, spotted deer and wild boar was maximum in T_8 (control). In contrast, the crop damage by Elephant was low (5 %) in T_7 (spraying + drenching + soil application) and T_5 (spraying + soil application). From the observations recorded during the different months the crop damage due

Table 11. Level of Elephant, Spotted deer, and Wild boar intrusion in the Herboliv* treated fodder grass field [%]

	Sep	otem b	er	0	ctobe	r	No	vemb	er	Dec	cemb	per	Ja	inuar	y	Fe	brua	ry	1	March			Agni			Total			Wean	
Month	E	D	W	E	D	W	E	D	W	Е	D	W	Е	D	W	Ε	D	W	Ε	D	w	Ε	D	W	Ε	D	W	Ε	D	W
T ₁	60	60	60	75	45	60	60	40	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	195	145	170	65	48.3	56.7
T ₂	75	75	70	80	60	80	75	65	75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	230	200	225	75.7	66.7	75.0
T ₃	30	70	45	40	50	60	50	60	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	120	180	165	40	50.0	55.0
T ₄	50	60	60	50	35	50	-	70	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100	165	1(80)	50	55.0	50.0
T ₅	40	50	75	40	60	70	75	60	60	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	155	170	205	50.7	56.7	68.3
T ₆	60	75	60	70	70	60	60	80	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	190	225	170	63.3	75.0	56.7
T ₇	45	40	40	35	50	50	40	45	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	120	135	1(50)	40	45.0	22.3
Тв	75	80	75	90	75	70	70	80	75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	235	235	220	78.3	78.3	73.3
Total	435	510	485	480	445	500	430	500	510	-	-	-		-	-	-	-	-	-	-	-	-	-	-	1345	1455	1495	465	485.0	498.3

E - Elephant, D - Spotted deer, W - Wild boar, (-) No Intrusion

Month	Sep	teml	ber	0	ctobe	er l	Nov	vemb	er	De	cemt	er	Ja	anuai	ry	Fe	brua	ry	-	March	n		April			Total			Mean	
	E	D	W	E	D	W	E	D	W	E	D	W	E	D	W	E	D	W	E	D	W	E	D	W	E	D	w	E	D	W
T ₁	6	1.5	2.5	-	2.5	-	8	1.5	1.5	5	1.5	2.5	5	2.5	1.5	-	1.5	0.5	_	1	-	-		-	24	12	8.5	-		-
T ₂	-	4	1	5	1.5	2.5	8	5	1	12	5	3	-	3	2	8	1	1	_	2	0.5		1	4	33	22.5	12	-		-
T ₃	-	2.5	1.5	4	1	1	-	1	2.5	6	3	1.5	8	1	2.5	-	3	1.5	-	2.5	1.5	_	-	-	18	14	12			
T ₄	-	0.5	-	-	1.5	-	5	2.5	1.5	5	2.5	1.5	-	1.5	0.5	-		-	-		1	_	-	0.5	10	10	5			-
Ts	-	1.5	0.5	5	2.5	0.5	-	1.5	0.5	-	1	0.5	-	1	1.5	-	0.5	0.5	-	3	_	_	-	-	5	11	4	5		-
Te	6	3	1	-	1	1.5	8	3	2	6	2	2.5	5	2	2.5	5	1	2	-	1	1.5	_	0.5	1.5	30	-	14.5		-	
Т,	-	0.5	-	-	0.5	0.5	5	0.5	-	-	0.5	0.5	-	0.5	-	-	-		-	-	-	-	-		5		-	5		
Ts	10	12	5	15	8	8	12	12	8	10	15	10	15	8	5	10	5	3	10	5	5	-	8	3	82	-		11.7		-
Total	22	26	12	29	19	14	46	27	17	-	+	1	-	+-	+	-	+	-	+-	15	-	-	-	-		158.5			21.1	-

E - Elephant, D - Spotted deer, W - Wild boar, (-) No damage

Plate 8. Wild animal damages in the Herboliv treated fields

Sugarcane field

Banana field

Fodder grass field

to Elephant intrusion was maximum in November (46 %) and least damage was observed in the month of March (10 %).

Similarly, the crop damage due to Spotted deer was high in T₈ (control) recording a value of 9.1 per cent followed by T₃ (50% - Soil application of Herboliv²). The per cent crop damage due to Spotted deer was maximum in December (30.5 %) and least damage in the month of April (9.5 %).

The table shows that the crop damage due to Wild boar was maximum in T₈ (control) in the month of December and least in the month of February and April.

Banana field

The degree of crop damage by Elephant, Spotted deer and Wild boar in the Herboliv* treated banana field is indicated in Table 13. From the table it can be predicted that the per cent crop damage was high in T₈ (control) and observed to be 16.6, 10.8, and 7.2 per cent due to elephant, spotted deer and wild boar, respectively. The per cent crop damage by wild elephant, spotted deer and wild boar was low in T₇ (spraying + drenching + soil application).

Fodder grass field

The degree of crop damage by Elephant, Spotted deer and Wild boar in the Herboliv+ treated fodder grass field is given in Table 14. The table indicates that the crop damage due to Elephant was maximum in T₈ (control) in the months of October followed by November.

The crop damage due to Spotted deer was maximum in T₈ (control) in the month of September and November.

The crop damage due to Wild boar was maximum in T_8 (9.1%) and minimum in T_3 (1.5%). The per cent crop damage due to Wild boar was maximum in the month of October and November (31 %) and minimum in September (27.5 %).

Table 13. Degree of crop damage by Elephant, Spotted deer, and Wild boar in the Herboliv* treated banana field (%)

Month	Sep	temb	er	Oc	tobe	r	Nov	emb	er	Dec	emb	er	Ja	nuar	у	Fe	brua	ry	N	/larch	1		April			Total			Mean	
wonth	E	D	w	E	D	w	E	D	w	E	D	w	Е	D	w	Е	D	w	Е	D	w	Е	D	w	E	D	w	Е	D	w
T ₁	-	1.5	3	-	2.5	1.5	12	1.5	2.5	-	2.5	0.5	5	1.5	-	-	2.5	1.5	-	2.5	1.5	-	_	-	17	14.5	10.5			1.8
T ₂	20	5	5	-	6	2.5	-	5	3	10	8	2.5	8	5	3	10	5	2.5	-	5	5	-	3	2.5	48	42	26	12	5.3	-
T ₃	-	8	0.5	10	1	1.5	_	3	1.5	5	5	2	-	3	2.5	-	4	0.5	_	1	2	-	-	_	15	25	10.5	7.5		
T ₄	-	1.5	3	-	1.5	-	15	1	2.5	-	0.5	0.5	-	0.5	2.5	-	0.5	-	5	-	2.5	-	-	0.5	20	5.5	11.5	10	0.9	
T ₅	-	0.5	0.5	-	3	0.5	-	0.5	0.5	8	3	0.5	-	2	0.5	-	2.5	1.5	-	3	-	-	-	-	8	14.5	4	8	2.1	0
T ₆	-	3	2	15	1	2.5	-	8	2	-	5	2.5	5	4	1.5	5	3	2	-	2.5	1.5	-	2.5	3	25	29	17	8.3	3.6	2
T ₇	-	0.5	-	-	0.5	0.5	5	0.5	-	-	-	0.5	-	0.5	-	-	-	-	-	0.5	-	-	-	-	5	2.5	1	5	0.5	0.5
T ₈	30	15	8	-	10	6	20	15	8	15	15	10	15	1,0	7	10	8	8	10	8-	6	-	6	5	100	87	58	16.7	10.9	7.3
Total	50	35	22	25	26	15	52	35	20	38	39	19	33	27	17	25	26	16	15	23	19	0	12	11	238	220	138.5	76	28.9	19.0

E - Elephant, D - Spotted deer, W - Wild boar, (-) No damage

Table 14. Degree of crop damage by Elephant, Spotted deer and Wild boar in the Herboliv* treated fodder grass field (%)

Month		ptem	ber	0	ctobe	r	No	vemb	er	De	cem	ber	J	anua	ту	F	ebrua	ary		Marc	h		Apri			Total		T	Mea	in
Mondi	E	D	w	E	D	w	Е	D	w	E	D	w	Е	D	w	Е	D	w	E	D	w	E	D	w	E	D	w	E	Тр	W
T ₁	10	5	2.5	10	3	5	5	2.5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	25	10.5	10	-	-	-
T ₂	25	12	5	30	7.5	7.5	8	5	5	-	-	-	-	-	-	-	_	-	-	-	_	_	-	-	63	24.5				-
T ₃	20	7.5	1.5	15	4	0.5	10	3	3	-	-	-	-	-	-	_	-	-	-	-	-	-	_	_	45	14.5				
T ₄	10	2.5	2.5	5	2.5	2	-	5	3	-	-	-	-	-	-	-	-	-	-	-	_	-	_	_	15	10	7.5	7.5		-
T ₅	10	3.5	3	10	3	2.5	5	2.5	3	-	-	-	_	_	-	-	-	_	-	_	_	_	-	-	25	9	8	8.3		
T ₆	15	10	5	15	10	3	20	8	5	-	-	-	-	_	-	-	-	_	-	_	_	_	_	_	50	28	13	16.7		
T ₇	15	2.5	0.5	12	0.5	0.5	15	2	1	-	-	_	-	_	-	-	_	_	_	_	_		_	-	42	5	1.5	14.0		0.5
T ₈	30	15	7.5	40	12	10	35	15	10	-	-	-	-	-	-	-	-	_	_	_	_	_	_	-	105	42	27.5	35.0		9.2
Total	135	58	27.5	137	43	31	98	43	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	370	144	89.5		47.8	29.8

E - Elephant, D - Spotted deer, W - Wild boar, (-) No damage

IMPACT OF HERBOLIV* ON THE CROP AND SOIL 1. Impact of Herboliv⁺ on crop growth and yield of agriculture crops

sugarcane field

The effect of Herboliv⁺ on crop growth of sugarcane indicated an appreciable difference between the various treatments (Table 15). Significant differences were observed in plant height due to the application of Herboliv⁺. Among the treatments T₇ treatment (spraying + drenching + soil application) increased the crop height in sugarcane registering a value of 2.04 $_{\text{m}}$ followed by T₅ (spraying + soil application) and T₆ (drenching + soil application) recording an average height of 1.98 m and 1.86 m respectively when compared to T₈ control which has registered a value of 1.42 m. The sugarcane growth was found to vary significantly due to the different treatments.

Similarly, the yield of sugarcane was found to be influenced due to Herboliv+ application among the different treatments. T₇ (spraying + drenching + soil application) increased the crop yield in sugarcane registering a value of 107 t ha⁻¹ followed by T₅ (spraying + soil application) and T₆ (drenching + soil application) treatment registering a value of 104 t ha⁻¹ and 98 t ha⁻¹, respectively, when compared to T₈ (control) recording a value of 85 t ha⁻¹. The sugarcane yield was found to vary significantly due to the different treatments and significant variation could be observed among the treatments.

Banana field

Significant differences were observed in plant height, due to different treatments which is depicted in Table 16. Among the treatments, T_7 (spraying + drenching + soil application) recorded a maximum height of 2.8 m which was highly significant followed by T_5 (spraying + soil application) recording a value of 2.6 m and T₆ (drenching + soil application) registering a plant height of 2.4 m when compared to control (1.7 m).

While considering the yield of banana T_7 treatment (spraying + drenching + soil application) recorded the highest yield registering a value of 8.2 kg tree⁻¹ when compared to all 0ther treatments which was significantly superior. T_{5} (spraying + soil application) and T_{6} (drenching + soil application) treatments registered a bunch yield of 7.6 kg tree⁻¹ and 6.8 kg tree⁻¹ respectively when compared to T₈ (control) which recorded the least yield of 5.4 kg tree⁻¹

Table 15. Plant height and yield of sugarcane in the Herboliv[†] treated field

S.No.	Treatments	Average plant height (m)	Yield (tones/hectare)
1	T ₁ - Spraying (10 %)	1.76	93
2	T ₂ - Drenching (20 %)	1.64	88
3	T ₃ - Soil application (50 %)	1.83	92
4	T ₄ - Spraying + Drenching (10 % + 20 %)	1.72	95
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	1.98	104
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	1.86	98
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	2.04	107
8	T ₆ – Control	1.42	85
	SEd	0.01	5.4
	CD (.05)	0.03	11 50

Table 16. Plant height and yield of banana in the $\mathsf{Herboliv}^{\scriptscriptstyle{+}}$ treated filed

S.No.	Treatments	Average plant height (m)	Bunch yield(Kg/tree)
1	T ₁ - Spraying (10 %)	2.1	6.5
2	T ₂ - Drenching (20 %)	1.9	6.2
3	T ₃ - Soil application (50 %)	2.2	6.6
4	T ₄ - Spraying + Drenching (10 % + 20 %)	2.3	6.3
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	2.6	7.6
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	2.4	6.8
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	2.8	8.2
8	T ₈ – Control	1.7	5.4

SEd 0.06 CD (.05) 0.13

0.07

Table 17. Yield of fodder grass in the Herboliv⁺ treated filed

S.No.	Treatments	Yield per (Kg/1m²)	Yield (tones/hectare)
1	T ₁ - Spraying (10 %)	0	0
2	T ₂ - Drenching (20 %)	0	0
3	T ₃ - Soil application (50 %)	0	0
4	T ₄ - Spraying + Drenching (10 % + 20 %)	0	0
5	T _s - Spraying + Soil Application (10 % + 50 %)	0	0
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	0	0
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	0	0
8	T ₈ – Control	0	0

plate 9. Performance of agriculture crop during application of Herboliv

8 months old sugarcane

10 months old banana

3 months old fodder grass

the banana yield was found to be influenced due to Herboliv* application in combination and significant difference could be observed among the different treatments.

Fodder grass field

The influence of Herboliv⁺ on crop yield could not be estimated as the crop was completely foraged and damaged by the Wild Animals.

2. Impact of Herboliv+ on soil nutrients

The soil from the experimental site (sugarcane, banana, and fodder grass) was collected and was analyzed for their chemical properties (Table 3).

$_{\mbox{A. Physico-chemical properties of soil analysis (prior application)}}$ $_{\mbox{Soil pH}}$

The soil pH was found to be neutral and the value recorded were 7.23 in sugarcane field, 7.53 in banana field and 7.66 in fodder grass field, respectively.

Electrical conductivity (EC)

Electrical conductivity was found to be $0.26~\rm dSm^{-1}$ in banana field, $0.16~\rm dSm^{-1}$ in sugarcane field and $0.14~\rm dSm^{-1}$ in fodder grass field.

Available nitrogen

The initial analysis of soil revealed that the available nitrogen was found to be low in the fodder grass field (277.33 kgha⁻¹), low in banana field (235.60 kg ha⁻¹) and it was medium in sugarcane field (248.70 kg ha⁻¹).

Available phosphorus

The soil analysed for available phosphorus revealed to be high in banana field (13.80 $^{\text{kg ha}^{-1}}$), low in fodder grass field (11.47 kg ha⁻¹) and medium in sugarcane field(13.16 kg ha⁻¹).

Available potassium

The available potassium from the soil analysis revealed to be high in the all three (sugarcane, banana and fodder grass) experimental sites. i.e. 287.70 kg ha⁻¹ in sugarcane field, 326.90 kg ha⁻¹ banana field and 321.00 kg ha⁻¹ in fodder grass field.

B. Impact of Herboliv⁺ on the soil of sugarcane field soil pH

Herboliv+ did not influence much in the pH among different treatment as only less variation could be observed as depicted in Table. 18

Electrical conductivity (EC)

From the Table 18 it could be understood that there was no significant variation among the different treatments and Herboliv⁺ was not influential in bringing much changes in EC. Electrical conductivity ranged from 0.16 dSm⁻¹ to 0.17 dSm⁻¹

Available nitrogen

The available nitrogen in the soil of sugarcane field indicated that there was no appreciable change between the various treatments (Table 18). However, T_7 treatment (spraying + drenching + soil application) registered the maximum available nitrogen value of 251.83 kg ha⁻¹ when compared to T_8 (248.7 kg ha⁻¹) whereas T_5 (spraying + soil application) treatment registered a value of 249.38 kg ha⁻¹.

Available phosphorus

The soil available phosphorus was not significantly influenced by the treatments (Table 18). The highest value of available phosphorus was observed in T_7 treatment (spraying + drenching + soil application) with the value of 14.40 kg ha⁻¹, whereas the lowest available phosphorus was recorded in T_8 control (13.16 kg ha⁻¹).

Available potassium

The statistical analysis for available potassium in soil revealed that the different treatment has no significant effect due to the Herboliv⁺ (Table 18). From the table it was found that combination of the treatment (spraying + drenching + soil application) registered the

Table 18. Impact of Herboliv⁺ on chemical properties of soil in sugarcane field

C N -	Treatments	-11	FC(45 4)	Available nutrients (kg ha ⁻¹)		
S.No.	Treatments	pН	EC(dSm-1)	N	Р	к
1	T ₁ - Spraying (10 %)	7.24	0.16	248.87	13.93	289.2
2	T ₂ - Drenching (20 %)	7.25	0.16	249.13	13.69	289.1
3	T ₃ - Soil application (50 %)	7.22	0.17	248.85	13.71	288.63
4	T ₄ - Spraying + Drenching (10 % + 20 %)	7.25	0.16	249	13.8	288.77
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	7.24	0.17	249.38	13.67	290.33
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	7.24	0.16	249.13	13.86	289.53
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	. 7.25	0.17	251.83	14.4	291.93
8	T ₈ – Control	7.23	0.16	248.7	13.16	287.7
	SEd CD (.05)	0.03 NS	0.011 NS	6.027 NS	0.391 NS	4.076 NS

waterkim available potassium value of 291.93 kg ha⁻¹ and the lowest value was observed in T₈ (327.70 kg ha⁻¹).

€ Impact of Herboliv* on the soil of banana field

The statistical analysis of soil pH in the banana field has not showed significant variation the different treatments (Table 19). The soil pH varied from 7.53 to 7.56 in Herboliv banana field.

Electrical conductivity (EC)

The electrical conductivity varied from 0.24 to 0.27 dSm⁻¹ in Herboliv* treated banana seld (Table 19) which shows slight variations among the different treatments.

Available nitrogen

The available nitrogen in the soil of banana field indicated that there was no appreciable charge among the various treatments (Table 19). From the table it is understood that T_7 reatment (spraying + drenching + soil application) recorded the maximum soil available nitrogen value of 240.93 kg ha⁻¹ when compared to T_8 (235.60 kg ha⁻¹).

Available phosphorus

The available phosphorus in the soil was not significantly influenced by the treatments as revealed by statistical analysis that is indicated in Table 19. From the table it could be observed that T₇ treatment (spraying + drenching + soil application) was found to enhance the soil available phosphorus to a value of 14.97 kg ha⁻¹ which was followed by T₆ (drenching + soil application) with soil available phosphorus of 14.93 kg ha⁻¹ and T₃ (soil application) with a value of 14.83 kg ha⁻¹.

Available potassium

The statistical analysis for available potassium in the soil revealed that the different treatments have no significant influence due to the Herboliv $^{+}$ application as indicated in banana field (Table 19). However, it was found that T_7 treatment (spraying + drenching + soil

Table 19. Impact of Herboliv⁺ on chemical properties of soil in banana field

S.No.	Treatments	рН	EC (dSm ⁻¹)	Available nutrients (kg ha ⁻¹)		
				N	Р	K
1	T ₁ - Spraying (10 %)	7.53	0.26	239.2	14.14	327.2
2	T ₂ - Drenching (20 %)	7.53	0.24	237.1	14.19	327.5
3	T ₃ - Soil application (50 %)	7.55	0.27	238.63	14.83	327.93
4	T ₄ - Spraying + Drenching (10 % + 20 %)	7.54	0.25	236.77	14.6	327.63
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	7.56	0.27	239.53	14.57	328.4
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	7.55	0.26	236.57	14.93	326.93
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	7.55	0.27	240.93	14.97	329.5
8	T ₈ – Control	7.53	0.26	235.6	13.8	326.9
	SEd	0.0172	0.013	6.599	0.526	3.966
	CD (.05)	NS	NS	NS	NS	NS

 $_{application}$) registered a maximum value of 329.50 kg ha⁻¹ followed by T₅ (328.40 kg ha⁻¹) and $_{3}$ (327.93 kg ha⁻¹). The least potassium value was recorded in T₈ (control) with a registered value of 326.90 kg ha⁻¹.

p. Impact of Herboliv⁺ on the soil of fodder grass field

soil pH

The soil pH value was not significantly influenced by the treatments. The Herboliv † did not influence the soil pH among different treatment as only less variation could be observed as depicted in Table 20 *viz.*, in T₁ (7.65), T₂ (7.63), T₃ (7.66), T₄ (7.64), T₅ (7.68), T₆ (7.66), T₇ (7.66) and T₈ (7.66).

Electrical conductivity (EC)

Herboliv $^+$ has not significantly enhanced the soil electrical conductivity and it differed with various treatments. The soil electrical conductivity differed with treatments of Herboliv $^+$ registering values of 0.14 dSm $^{-1}$ in T $_1$, 0.13 dSm $^{-1}$ in T $_2$, 0.14 dSm $^{-1}$ in T $_3$, 0.13 dSm $^{-1}$ in T $_4$, 0.14 dSm $^{-1}$ in T $_5$, 0.13 dSm $^{-1}$ in T $_6$, 0.14 dSm $^{-1}$ in T $_7$ and 0.14 dSm $^{-1}$ in T $_8$ (Table 20).

Available nitrogen

The statistical analysis for available nitrogen in the soil revealed that the different treatments have no significant influence due to the Herboliv $^{+}$ application as indicated in Table 20. T_7 treatment (spraying + drenching + soil application) registering the highest soil available nitrogen value of 282.69 kg ha $^{-1}$ when compared to T_8 (277.33 kg ha $^{-1}$) followed by T_5 (spraying + soil application) and T_4 (spraying + drenching) treatment recording values of 281.06 kg ha $^{-1}$ and 280.47 kg ha $^{-1}$ respectively.

Available phosphorus

The soil available phosphorus was not significantly influenced by different treatments (Table 20). From the table it could be observed that T_7 treatment (spraying + drenching + soil application) was found to enhance the soil available phosphorus by 13.87 kg ha⁻¹ when T_8 (control) which recorded the least value of 11.47 kg ha⁻¹ followed by T_8

Table 20. Impact of Herboliv⁺ on chemical properties of soil in fodder grass field

SI.No.	Treatments	pH	EC (dSm ⁻¹)	Availab	Available Nutrients (kg ha ⁻¹)		
		.	Lo (doin')	N	P	K	
1	T₁ - Spraying (10 %)	7.65	0.14	279.7	11.9	323.93	
2	T ₂ - Drenching (20 %)	7.63	0.13	279.3	11.53	323.43	
3	T ₃ - Soil application (50 %)	7.66	0.14	278.77	12.87	324.87	
4	T ₄ - Spraying + Drenching (10 % + 20 %)	7.64	0.13	280.47	12.4	323.99	
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	7.68	0.14	281.06	13.17	323.67	
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	7.66	0.13	280.13	12.47	324.4	
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	7.66	0.14	282.69	13.87	325.73	
8	T ₈ – Control	7.66	0.14	277.33	11.47	321	
	SEd	0.029	0.019	8.283	0.79	2 398	

 SEd
 0.029
 0.019
 8.283
 0.79
 2.398

 CD (.05)
 NS
 NS
 NS
 NS

(spraying + soil application) and T₃ (soil application) which registered a value of 13.17 kg ha⁻¹ and 12.87 kg ha⁻¹ respectively.

Available potassium

The statistical analysis for available potassium in the soil revealed that the different treatment had no significant influence on available potassium (Table 20). From the table it was found that T₇ treatment (spraying + drenching + soil application) recorded the highest value of 325.73 kg ha⁻¹ of available soil potassium followed by T₃ (soil application) treatment and T₆ (drenching + soil application) which registered value of 324.87 kg ha⁻¹ and 324.40 kg ha⁻¹ respectively. T₈ (control) registered the least value of 321.00 kg ha⁻¹ and it was varying among the other treatment values.

E. Impact of Herboliv⁺ application on soil microbial population

1. Soil Microflora Estimation (prior application)

Soil from the experimental site (sugarcane, banana, fodder grass) was collected and analyzed for the soil biological properties viz., Quantification of population of soil microbes such as bacteria, fungi and actinomycetes which are depicted in Table 3. The microbial population status in the soil of sugarcane field was 54.3 × 10⁶ CFU's gram⁻¹ of soil for bacteria, 20.7 × 10⁵ CFU's gram⁻¹ of soil for fungi and 46.8 × 10³ CFU's gram⁻¹ of soil for actinomycetes. In banana field the soil microbial status was 72.3 × 10⁶ CFU's gram⁻¹ of soil for bacteria, 35.7 × 10⁵ CFU's gram⁻¹ of soil for fungi and 42.3 × 10³ gram⁻¹ of soil for actinomycetes. The soil microbial population in fodder grass field was 38.3 × 10⁶ CFU's gram⁻¹ of soil for bacteria, 20.7 × 10⁵ CFU's gram⁻¹ of soil for fungi and 58.0 × 10³ CFU's gram⁻¹ of soil for actinomycetes.

2. Impact of Herboliv⁺ on soil microbial population in sugarcane field Bacterial population

The effect of Herboliv⁺ on bacterial population of sugarcane soil has shown an appreciable change among the various treatments which is depicted in Table 21. Among the different treatment T_7 (spraying + drenching + soil application) has recorded the maximum bacterial population in the soil registering a value of 360.7×10^6 CFU's gram⁻¹ of soil, followed by T_5 (spraying + soil application) treatment (301.3 × 10⁶ CFU's gram⁻¹ of soil) and T_6

Plate 10. Processing of microbial population study

(drenching + soil application) treatment (285.3 \times 10⁶ CFU's gram⁻¹ of soil) when compared to T₈ (control) which has registered a value of 62.0 \times 10⁶ CFU's gram⁻¹ of soil.

Fungal population

The effect of Herboliv⁺ on fungal population of sugarcane soil has indicated an appreciable change between the different treatments as shown in Table 21. From the table it is understood that T_7 treatment (spraying + drenching + soil application) has recorded the maximum fungal population in the soil registering a value of 56.0×10^5 CFU's gram⁻¹ of soil, followed by T_5 (spraying + soil application) treatment recording the value of 42.0×10^5 CFU's gram⁻¹ of soil and T_6 (drenching + soil application) treatment registering a value of 35.3×10^5 CFU's gram⁻¹ of soil when compared to T_8 (control) with a least value of 23.7×10^5 CFU's gram⁻¹ of soil. Highly significant variation could be observed in the fungal population among the various treatments.

Actinomycetes population

The impact of Herboliv $^+$ on actinomycetes population of sugarcane soil indicated highly significant and appreciable changes between the various treatments as indicated in Table 21. From the table it can be understood that T_7 treatment (spraying + drenching + soil application) has recorded the maximum actinomycetes population in the soil registering the value of 210.0 \times 10 3 CFU's gram $^{-1}$ of soil, followed by T_5 (spraying + soil application) treatment recording a values of 189.0 \times 10 3 CFU's gram $^{-1}$ of soil and T_6 (drenching + soil application) treatment registering a value of 153.0 \times 10 3 CFU's gram $^{-1}$ of soil, when compared to T_8 (control) which recorded the least value of 57.7 \times 10 3 CFU's gram $^{-1}$ of soil. The actinomycetes population was found to possess highly significant variation among the various treatments.

3. Impact of Herboliv[†] on soil microbial population in banana field Bacterial population

The effect of Herboliv⁺ on bacterial population of banana soil has shown appreciable changes between the various treatments as indicated in Table 22. It was observed that T_7 treatment (spraying + drenching + soil application) had the highest bacterial population in the soil registering a value of 301.7 × 10⁶ CFU's gram⁻¹ of soil when compared to the T_8 (control) with a population of 85.0 × 10⁶ CFU's gram⁻¹ of soil. The bacterial population recorded due to T_5 (spraying + soil application) treatment was 264.7 × 10⁶ CFU's gram⁻¹ of soil and due to T_6

Table 21. Impact of Herboliv⁺ on the soil microbial population in sugarcane field (Cfu's/gram of soil)

SI.No	Treatments	Bacteria (x10 ⁶)	Fungi (x10 ⁵)	Actinomycetes (x10 ³)
1	T ₁ - Spraying (10 %)	96.3	26.3	95.3
2	T ₂ - Drenching (20 %)	82.7	23.7	71.3
3	T ₃ - Soil application (50 %)	268.3	34.3	149.3
4	T ₄ - Spraying + Drenching (10 % + 20 %)	127.3	26.7	145.3
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	301.3	42	189
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	285.3	35.3	153
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	360.7	56	210
8	T ₈ – Control	62	23.7	57.7

SEd 2.07 0.91 1.56 CD (.05) 4.45 1.97 3.36

Table 22. Impact of Herboliv* on the soil microbial population in banana field (Cfu's/gram of soil)

SI.No.	Treatments	Bacteria (x10 ⁶)	Fungi (x10 ⁵)	Actinomycetes (x10 ³)
1	T ₁ - Spraying (10 %)	114.7	63.3	92.3
2	T ₂ - Drenching (20 %)	96.3	48.7	65.3
3	T ₃ - Soil application (50 %)	128.7	69	117.3
4	T ₄ - Spraying + Drenching (10 % + 20 %)	123.7	60	101.3
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	264.7	97.3	188.7
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	195.7	74	127.7
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	301.7	124.7	222
8	T ₈ – Control	85	41	47.3

 SEd
 2.69
 2.54
 2.34

 CD (.05)
 5.79
 5.45
 5.03

(drenching + soil application) was 195.7 × 10⁶ CFU's gram⁻¹ of soil. The bacterial population was found to vary significantly and the different treatment due to the Herboliv had a significant influence in banana field.

Fungal population

The soil fungal population when subjected to statistical analysis showed significant variation among the different treatments as indicated in Table 22. Among the treatments T7 treatment (spraying + drenching + soil application) recorded the highest fungal population in the soil registering a value of 124.7×10^5 CFU's gram⁻¹ of soil when compared to the T₈ (control) with a least value of 41.0 \times 10⁵ CFU's gram⁻¹ of soil. T₅ (spraying + soil application) treatment recorded a value of 97.3×10^5 CFU's gram⁻¹ of soil and T₆ (drenching + soil application) recorded a significant lower value of 74.0 × 10⁵ CFU's gram⁻¹ of soil when compared to the combination of treatments.

Actinomycetes population

The effect of Herboliv⁺ on Actinomycetes population of banana soil indicated an appreciable change among the various treatments (Table 22). T₇ treatment (spraying + drenching + soil application) registered a highest population of 222.0 × 103 CFU's gram-1 of soil, followed by T_5 (spraying + soil application) treatment with a value of 188.7 \times 10³ CFU's gram-1 of soil. A comparatively lesser population was recorded in T₆ (drenching + soil application) treatment (127.7 \times 10³ CFU's gram⁻¹ of soil) when compared to T₇. The other treatments registered values of 92.3 × 10³ CFU's gram⁻¹ of soil in T₁, 65.3 × 10³ CFU's gram⁻¹ of soil in T_2 , 117.3 × 10³ CFU's gram⁻¹ of soil in T_3 and 101.3 × 10³ CFU's gram⁻¹ of soil in T_4 when compared to the combination of treatments (T_7) .

4. Impact of Herboliv⁺ on soil microbial population in fodder grass field **Bacterial** population

The bacterial population status in fodder field when subjected to statistical analysis showed highly significant variation among the different treatments (Table 23). T₇ treatment (spraying + drenching + soil application) registered highest bacterial population in the soil with a value of 217.0 \times 10⁶ CFU's gram⁻¹ of soil when compared to T₈ control (47.0 \times 10⁶ gram⁻¹ of soil) whereas T_5 (spraying + soil application) treatment recorded a value of 166.0 × 10⁶ CFU's

Table 23. Impact of Herboliv⁺ on the soil microbial population in fodder grass field (Cfu's/gram of soil)

SI.No.	Treatments	Bacteria (x10 ⁶)	Fungi (x10 ⁵)	Actinomycetes (x10 ³
1	T ₁ - Spraying (10 %)	88	24	67.3
2	T ₂ - Drenching (20 %)	49	21.7	53.3
3	T ₃ - Soil application (50 %)	114.3	26.3	86
4	T ₄ - Spraying + Drenching (10 % + 20 %)	90	24.7	77.3
5	T ₅ - Spraying + Soil Application (10 % + 50 %)	166	35.3	130.7
6	T ₆ - Drenching + Soil Application (20 % + 50 %)	125.3	28.7	104.7
7	T ₇ - Spraying + Drenching + Soil Application (10 % + 20 % + 50 %)	217	42.7	184
8	T ₈ - Control	47	22.3	64
	SEd	4.0		
	CD (.05)	1.8 3.86	1.93 4.14	1.54 3.31

gram⁻¹ of soil and T_6 (drenching + soil application) registered a population status of 125.3×10^6 CFU's gram⁻¹ of soil. The bacterial population in the remaining treatments registered values of 88.0×10^6 CFU's gram⁻¹ of soil in T_1 , 49.0×10^6 CFU's gram⁻¹ of soil in T_2 , 114.3×10^6 CFU's gram⁻¹ of soil in T_3 and 90×10^6 CFU's gram⁻¹ of soil in T_4 which were comparatively lesser than to T_7 .

Fungal population

The effect of Herboliv⁺ on fungal population in fodder grass field indicated an appreciable change among the various treatments which is given in Table 23. Among the different treatments T_7 (spraying + drenching + soil application) recorded the highest fungal population with a value of 42.7×10^5 CFU's gram⁻¹ of soil followed by T_5 (spraying + soil application) treatment with a value of 35.3×10^5 CFU's gram⁻¹ of soil and T_6 (drenching + soil application) recorded a value of 28.7×10^5 CFU's gram⁻¹ soil. The fungal population status of T_8 was comparatively lesser when compared to other treatments viz., T_1 (24.0×10^5 CFU's gram⁻¹ soil), T_2 (21.7×10^5 CFU's gram⁻¹ soil), T_3 (26.3×10^5 CFU's gram⁻¹ of soil) and T_4 (24.7×10^5 CFU's gram⁻¹ soil).

Actinomycetes population

The impact of Herboliv⁺ on soil microbial population with respect to actinomycetes of fodder grass soil indicated an appreciable and significant change between the various treatments (Table 23). Among the various treatments T_7 (spraying + drenching + soil application) recorded the highest actinomycetes population registering a value of 184.0×10^3 CFU's gram⁻¹ of soil when compared to the untreated control T_8 (64.0 × 10^3 CFU's gram⁻¹ of soil). From the table it is understood that T_5 (spraying + soil application) treatment recorded a value of 130.7×10^3 CFU's gram⁻¹ of soil and T_6 (drenching + soil application) treatment registered a population value of 104.7×10^3 CFU's gram⁻¹ of soil. The statistical analysis on population status of actinomycetes revealed that there was a highly significant difference among the various treatments.

The increase in soil microbial population may be due to the positive effect of the constituents of Herboliv⁺ on soil biological properties. Increase in microbial population would contribute to the Rhizosphere effect, which would have led to intense microbial activity in the Rhizosphere zone. This intense activity has a direct relation with the crop health.

Plate 11. Microbial population status in Herboliv' treated soil T₈ Control **Bacterial** growth T_s Control **Fungal growth**

CONCLUSION AND RECOMMENDATION

As human populations encroachto wild animal habitats, natural wildlife territory is displaced. The population density of wildlife and humans overlaps increasing their interaction thus resulting in increased physical conflict. Potential solutions to these conflicts include electric fencing, land use planning, community based natural resource management, compensation, payment for environmental services, ecotourism, wildlife friendly products, or other field solutions. To reduce human animal conflict, Government of India has partnered with a number of organizations to provide solutions across the country. Having this as background, the present study was aimed to reduce human animalconflict by using organic product (Herboliv⁺) in agriculture field, prone to wildlife damage. Towards realising the objectives enumerated in the introduction, experiments were carried out at Sirumugai range in 2012 to 2013. The salient findings of the investigations are reported under the following headings.

- 1. The number of crop raid and level of intrusion by wild animals in the agriculture field
- 2. Percentage of crop damage by wild animals in the study sites
- 3. Impact of crop growth and yield of Herboliv treated fields
- 4. Impact of Herboliv[†] on soil nutrient status and microbial population

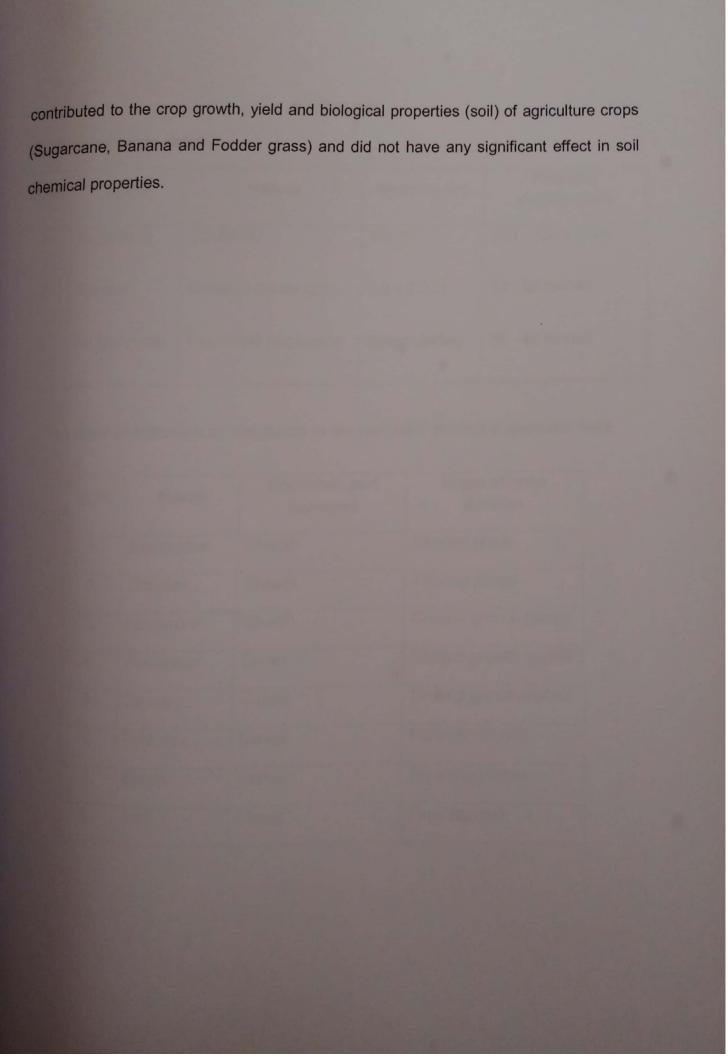
The observations recorded were for the experimental trial were, number of crop raid, percentage of crop damage, crop yield assessment, soil nutrient status and soil microbial status. Agriculture fields (sugarcane, banana and fodder grass) prone to wild animals attack and damage frequently selected for the experiment were treated with the Herboliv⁺ and studied for a period of 8 months. During the study the observations recorded, were analyzed, summarized and are concluded in this chapter.

The number of crop raid by wild animals (elephant, deer and wild boar) was observed maximum in the treatment T_8 (control) and minimal in the treatment T_7 (spraying + drenching + soil application) in sugarcane field. In banana field, the elephant crop raid was highest in T_8 (7) and lowest in T_7 (1) and a similar trend was observed due to deer and wild boar. The highest number of crop raid by wild animals in the fodder grass field was 51 in treatment T_8 and due to the Herboliv⁺ treatment the number of crop raid was low in T_7 (17) treatment.

The level of wild animal intrusion in sugarcane field (elephant, deer and wild boar) was observed to be highest in treatment T_8 (66.4%, 56.25 % and 55 % -control) and lowest in treatment T_7 (spraying + drenching + soil application) with a result of 20 %, 23 % and 20 %. In banana field, the level of intrusion due to elephant was maximum in T_8 (64.1 %) and minimum in T_7 (40 %) and a similar pattern of crop raid was observed due to deer and wild boar. The highest level of intrusion by wild animals in the fodder grass field was 78.3 per cent, 78.3 per cent and 73.3 per cent respectively in treatment T_8 and due to the combination of Herboliv[†] treatment the number of crop raid was low in T_7 (40 %, 45 % and 53.3 %) treatment.

The degree of crop damage by wild animals (elephant, deer and wild boar) in sugarcane field was observed to be maximum in treatment T_8 (11.7 %, 9.1% and 5.8%) and minimum in treatment T_7 (spraying + drenching + soil application) with a result of 5 per cent, 0.5 per cent and 0.5 per cent. In banana field, the percentage of crop damage was maximum in T_8 (16.7 %, 10.9 % and 7.3 %) and minimum in T_7 (5 %, 0.5 % and 0.5 %). A similar trend was observed due to deer and wild boar damage. The highest degree of crop damage by wild animals in the fodder grass field was 35 per cent, 14 per

cent and 9.2 per cent respectively in treatment T₈ and due to the Herboliv treatment degree of damage was low in T₇due to deer and wild boar(13 % and 2.5 %) whereas the damage by wild elephant was low in T₄ treatment.


Crop growth and yield of Herboliv* treated sugarcane field has shown a maximum plant height of 2.04 m and a maximum yield of 107.00 t hard in Try treatment. The minimum growth and yield was recorded in T8 treatment with a mean height of 1.42 m and yield of 85.00 t hard. The banana plant height and yield was found to be influenced due to Herboliv+ application in different treatments, where Try treatment showed the maximum plant height (2.8 m) and bunch yield (8.2 kg tree*). In the fodder grass field, yield could not be estimated as the crop was completely damaged by the wild animals.

Impact of soil nutrient status in Herboliv* treated sugarcane field indicates that the soil pH was found to vary from 7.23 to 7.25. Electrical conductivity ranged from the 0.16 dSm⁻¹to 0.17dSm⁻¹. The soil available nitrogen was high in T₇ (251.83 kg ha⁻¹) and low in T₈ (248.70 kg ha⁻¹). Similarly available phosphorus and potassium was maximum in T₇ treatment (14.40 kg ha⁻¹ and 291.93 kg ha⁻¹) and minimal in T₈ treatment (13.16 kg ha⁻¹ and 287.70 kg ha⁻¹). The Chemical properties of Herboliv* treated banana field has shown that soil pH ranged from 7.53 to 7.56 in which T₇ recorded highest pH value,Electrical conductivity ranged from the 0.24 dSm⁻¹to 0.27dSm⁻¹. The maximum soil available nitrogen recorded was of 240.93 kg ha⁻¹ in T₇ treatment followed by T₈ (239.53 kg ha⁻¹) and minimum in T₈ treatment (235.60 kg ha⁻¹). The available phosphorus ranged from 13.80 to 14.97 kg ha⁻¹ in Herboliv* treated banana field. A

similar trend of result was observed in fodder grass field with reference to soil chemical properties

Microbial population in Herboliv⁺ treated agriculture field has shown highest bacterial population in sugarcane field, banana field and fodder grass field with values of 360.7 ×10⁶gram⁻¹of soil, 301.7 ×10⁶gram⁻¹of soil and 217.0 ×10⁶gram⁻¹of soil respectively in T₇ treatment and lowest bacterial population was recorded in T₈ treatment. The fungal population in sugarcane was maximum in T₇ treatment due to Herboliv⁺ with value of 56.0 ×10⁵gram⁻¹of soil and minimum in T₈ (23.7 ×10⁵gram⁻¹of soil), likewise in banana and fodder field a similar trend in fungal population was observed. Among the three Herboliv⁺ treated field, banana field has registered a maximum actinomycetes population of 222.0 ×10³gram⁻¹of soil followed by sugarcane field (210.0 ×10³gram⁻¹of soil) and fodder grass field (184.0 ×10³gram⁻¹of soil) in T₇ treatment and the lowest actinomycetes population was recorded in T₈ treatment with values of 64.0 ×10³gram⁻¹of soil, 57.7 ×10³ gram⁻¹of soil and 47.3 ×10³gram⁻¹of soil respectively in fodder grass field, sugarcane field and banana field.

The study results help to conclude that different mode of application of Herboliv⁺ treatment namely spraying, drenching and soil application has not helped to prevent wild animal intrusion in the treated agriculture field. Crop raid by wild animals and their eventual intrusion into the treated agriculture fields has also been observed. It is important to note that the wild animals made physical crop damage and has not consumed the crop in the Herboliv⁺ treated fields. Hence, it can be concluded that Herboliv⁺ can act as an antifeedant for wild animals but it cannot act as a repellent to prevent wild animal intrusion into the agriculture crops. It is observed that Herboliv⁺ has

ANNEXURE

Agriculture crops details

SI.No	Crops	Variety	Spacing (m)	Potential yield/hectare
1	Sugarcane	CO.86032	1.5 m	100 - 130 tonnes
2	Banana	Nendran (<i>Musa</i> spp.)	2.0 x 2.0 m	50 - 60 tonnes
3	Fodder grass	Pennistum purpureum	Broad casting	35 - 40 tonnes
Barrell				

The level of intrusion by elephants in the Herboliv[†] treated sugarcane field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Sheath	Tillering phase
2.	October	Sheath	Tillering phase
3.	November	Sheath	Ground growth period Ground growth period
4.	December	Canes	Ground growth period
5.	January	Canes	Ripening Phase
6.	February	Canes	Ripening Phase
7.	March	Canes	Final harvest
8.	April	Canes	

The level of intrusion by Deer in the Herboliv* treated sugarcane field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Sheath	Tillering phase
2.	October	Sheath	Tillering phase
3.	November	Sheath	Ground growth period
4.	December	Canes	Ground growth period
5.	January	Canes	Ground growth period
6.	February	Canes	Ripening Phase
7.	March	Canes	Ripening Phase
8.	April	Canes	Final harvest

The level of intrusion by Wild boar in the Herboliv[⁺] treated sugarcane field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Sheath	Tillering phase
2.	October	Sheath	Tillering phase
3.	November	Sheath	Ground growth period
4.	December	Canes	Ground growth period
5.	January	Canes	Ground growth period
6.	February	Canes	Ripening Phase
7.	March	Canes	Ripening Phase
8.	April	Canes	Final harvest

The level of intrusion by elephants in the Herboliv⁺ treated banana field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Stems	Sucker
2.	October	Stems	Sucker
3.	November	Stems	Sucker
4.	December	Flower	Sucker
5.	January	Flower	Flowering
6.	February	Bunch/Fruits	Flowering
7.	March	Bunch/Fruits	Fruiting
8.	April	Bunch/Fruits	Fruiting

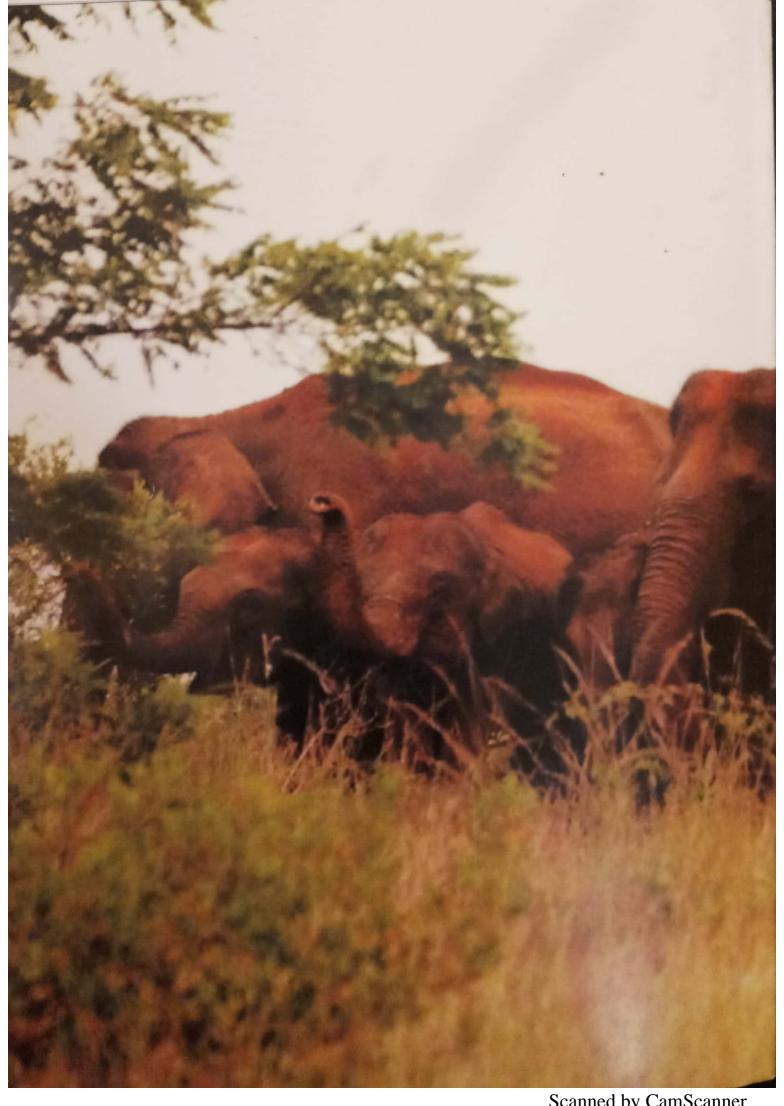
The level of intrusion by Deer in the Herboliv⁺ treated banana field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Leaves	Sucker
2.	October	Leaves	Sucker
3.	November	Leaves	Sucker
4.	December	Flower	Sucker
5.	January	Flower	Flowering
6.	February	Bunch/Fruits	Flowering
7.	March	Bunch/Fruits	Fruiting
8.	April	Bunch/Fruits	Fruiting

The level of intrusion by Wild boar in the Herboliv⁺ treated banana field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Rhizome	Sucker
2.	October	Rhizome	Sucker
3.	November	Rhizome	Sucker
4.	December	Rhizome	Sucker
5.	January	Rhizome	Flowering
6.	February	Rhizome	Flowering
7.	March	Rhizome	Fruiting
8.	April	Rhizome	Fruiting

The level of intrusion by elephants in the Herboliv⁺ treated fodder grass field


SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Grass	Germination
2.	October	Grass	Flowering
3.	November	Grass	Flowering

The level of intrusion by Deer in the Herboliv⁺ treated fodder grass field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Grass	Germination
2.	October	Grass	Flowering
3.	November	Grass	Flowering

The level of intrusion by Wild boar in the Herboliv⁺ treated fodder grass field

SI.No	Month	Economic part damaged	Stage of crop damage
1.	September	Grass/root	Germination
2.	October	Grass/root	Flowering
3.	November	Grass/root	Flowering

Scanned by CamScanner